Level Set Dynamics and the Non-blowup of the 2D Quasi-geostrophic Equation

نویسندگان

  • J. Deng
  • T. Y. Hou
  • R. Li
  • X. Yu
چکیده

In this article we apply the technique proposed in Deng-Hou-Yu [7] to study the level set dynamics of the 2D quasi-geostrophic equation. Under certain assumptions on the local geometric regularity of the level sets of θ, we obtain global regularity results with improved growth estimate on ∣

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Global Well-posedness for the Critical 2d Dissipative Quasi-geostrophic Equation

We give an elementary proof of the global well-posedness for the critical 2D dissipative quasi-geostrophic equation. The argument is based on a non-local maximum principle involving appropriate moduli of continuity.

متن کامل

Global Well-posedness for the 2d Quasi-geostrophic Equation in a Critical Besov Space

We show that the 2D quasi-geostrophic equation has global and unique strong solution when the (large) data belongs in the critical scale invariant space Ḃ2−2α 2,∞ ∩ L2/(2α−1).

متن کامل

An Inviscid Regularization for the Surface Quasi-Geostrophic Equation

Inspired by recent developments in Berdina-like models for turbulence, we propose an inviscid regularization for the surface quasi-geostrophic (SQG) equations. We are particularly interested in the celebrated question of blowup in finite time of the solution gradient of the SQG equations. The new regularization yields a necessary and sufficient condition, satisfied by the regularized solution, ...

متن کامل

Remarks on the global regularity for the super-critical 2D dissipative quasi-geostrophic equation

In this article we apply the method used in the recent elegant proof by Kiselev, Nazarov and Volberg of the well-posedness of critically dissipative 2D quasi-geostrophic equation to the super-critical case. We prove that if the initial value satisfies ‖∇θ0‖1−2s L∞ ‖θ0‖ L∞ < cs for some small number cs > 0, where s is the power of the fractional Laplacian, then no finite time singularity will oc...

متن کامل

Numerical Simulations of a 2d Quasi Geostrophic Equation

This paper deals with the numerical simulations of the 2D generalized quasi geostrophic equation, where the velocity field is related to the solution θ by a rotation of Riesz transforms. Depending on the parameters of the problem, we present numerical evidences for long time behavior of the solution such as global existence effects or blow up in finite time.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006